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K�rzlich beschrieben wir mit der Verbindung Ga9(CMe3)9[1]

(1) eine im Bereich der schwereren Elemente der dritten
Hauptgruppe einzigartige neutrale Clusterverbindung, die
�ber neun einwertige Galliumatome verf�gt. Ihre Struktur
entspricht einem dreifach �berdachten trigonalen Prisma, das
entlang der dreiz,hligen Achse gestreckt ist. F�r das Element
Bor kennt man entsprechende Subhalogenidcluster B9X9

(X=Cl, Br), die sich zu den ebenfalls isolierten und ein-
gehend charakterisierten Anionen [B9X9]� und [B9X9]2�

reduzieren lassen.[2] Die Dianionen haben aufgrund ihrer
Elektronenkonfiguration nach den Wade-Regeln closo-
Strukturen und sind ebenso wie die Radikalanionen gegen-
�ber den neutralen Verbindungen entlang der dreiz,hligen
Achse gestaucht.[2] Durch Untersuchung von 1 bietet sich
somit die Gelegenheit, 6hnlichkeiten oder Unterschiede im
chemischen Verhalten von Bor und seinem �bern,chsten
schwereren Homologen Gallium aufzuzeigen.

Das Redoxpotential des reversiblen Transfers eines
Elektrons auf den Cluster von 1 wurde cyclovoltammetrisch
zu �1.74 V (bezogen auf [Fe(C5H5)2]0/+) bestimmt.[1] Eine
zweite Reduktion mit stark negativem Potential (�2.7 V) war
irreversibel. Versuche zur Reduktion von 1 mit Alkalimetal-
len in n-Hexan, Toluol oder THF blieben ohne Ergebnis.
Aufgrund seines Redoxpotentials kam Decamethylcobalto-
cen infrage, das zus,tzlich eine homogene Reaktionsf�hrung
in organischen L@sungsmitteln erlaubt.[3] Nach Umsetzung
von 1 mit dem Cobaltocen im Molverh,ltnis 1:1 in 1,2-
Difluorbenzol[4] isolierten wir tiefgr�ne, in unpolaren Solven-
tien wie Pentan unl@sliche Kristalle des Produktes 2 [Gl. (1)].
Aufgrund seines Paramagnetismus liefert 2 keine aufgel@sten
NMR-Spektren.
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Die Konstitution von 2 wurde durch eine Kristallstruktur-
analyse ermittelt.[5] Demnach liegt 2 als ionische Verbindung
[Ga9(CMe3)9]�[Co(C5Me5)2]+ mit einem deltaedrischen Clus-
terradikalanion (Abbildung 1) und einem 18-Elektronen-
Komplexkation vor. Ebenso wie in der neutralen Verbindung

1 hat der Cluster in 2 die Struktur eines dreifach �berdachten
trigonalen Prismas. Bez�glich der Ga-Ga-Abst,nde ergeben
sich aber signifikante Abweichungen, die am deutlichsten an
den Kanten des trigonalen Prismas parallel zur dreiz,hligen
Drehachse ausfallen (Ga1-Ga2, Ga3-Ga6, Ga4-Ga5): In 1
wurden dort sehr große Abst,nde von 298.8 pm ermittelt, die
allenfalls mit schwachen direkten Wechselwirkungen in Ein-
klang sind. Das Prisma wird bei der Reduktion zu 2 und der
Aufnahme eines Elektrons gestaucht, wodurch diese
Abst,nde um 17 pm auf im Mittel 281.9 pm deutlich verklei-
nert werden. Gleichzeitig werden die Dreieckskanten des
trigonalen Prismas von 267.0 auf 274.6 pm verl,ngert, sodass
eine Ann,herung an ein gleichseitiges Prisma erfolgt. F�r die
Abst,nde zu den �berbr�ckenden Galliumatomen ergeben
sich geringere 6nderungen von 258.8 pm in 1 auf 255.8 pm in
2. Zum Vergleich seien die Ga-Ga-Abst,nde in den tetra-
edrischen Clustern Ga4[C(SiMe2R)3]4 mit durchschnittlich
269 pm angegeben.[6] Das Cobaltocenium-Kation weist die
�blicherweise beobachteten Strukturparameter auf.[7] Die
den Borsubhalogeniden vergleichbare Stauchung des Clus-
ters verdeutlicht die �berraschend hohe Gbereinstimmung im
chemischen Verhalten von Bor- und Galliumclustern EnRn
bez�glich ihrer Reaktivit,t und Bindungseigenschaften, auch
wenn die Reduktionspotentiale von halogenierten Borclus-
tern deutlich weniger negativ sind als die von 1.[2]

Die 6nderungen im Clusterger�st, die bei der Bildung des
Radikalanions auftreten, sind im Einklang mit Ergebnissen
quantenchemischer Rechnungen. Der neutrale Cluster wird

Abbildung 1. Molek�lstruktur des Anions von 2 ; von den tert-Butyl-
Gruppen sind nur die a-Kohlenstoffatome dargestellt. Ausgew�hlte
Abst�nde [pm]: Ga-Ga-Abst�nde zu den �berdachenden Ga-Atomen
(Ga7, Ga8, Ga9): 254.67(5)–257.09(6) (1 255.8), Ga-Ga-Abst�nde ent-
lang der Dreieckskanten des Prismas zwischen den Atomen Ga1, Ga3,
Ga4 und Ga2, Ga5, Ga6: 273.57(6)–277.22(6) (1 274.8), Ga1-Ga2
279.70(6), Ga3-Ga6 284.17(6), Ga4-Ga5 280.65(6) (1 281.5), Ga-C
203.8 (1).
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im Wesentlichen durch Bindungen zwischen den Dach- und
Prismenatomen zusammengehalten. Die Elektronenstruktur
kann durch sechs Ga(Prisma)-Ga(Dach)-Ga(Prisma)-Drei-
zentren-Bindungen beschrieben werden. Direkte Wechsel-
wirkungen zwischen den Prismenatomen haben dagegen nur
eine untergeordnete Bedeutung. Das ungepaarte Elektron
des Radikalanions h,lt sich vorwiegend (0.993e�) in p-
Orbitalen von Galliumatomen auf, wobei die Dachatome
den gr@ßten Teil (80%) der zus,tzlichen Ladung tragen.
Durch Wechselwirkung mit antibindenden Orbitalen der
Dreizentrenbindungen erfolgt eine erhebliche Stabilisierung,
die zu einer Verkleinerung der Ga-Ga-Abst,nde entlang der
Prismenkanten parallel zur dreiz,hligen Achse f�hrt. Wie
experimentell best,tigt wurde, verkleinern sich durch diese
stabilisierenden Wechselwirkungen auch die Abst,nde zwi-
schen den Dach- und Prismenatomen. Im Wesentlichen
bleiben die Grenzorbitale beim Gbergang vom neutralen
Molek�l zum Radikalanion unver,ndert, und durch Auf-
nahme des Elektrons wird das LUMO in 1 halb besetzt.
Veranschaulicht erzeugt das resultierende SOMO einen
„G�rtel“ um die Rechteckfl,chen des Prismas, der sich
haupts,chlich auf tangential zur Oberfl,che angeordnete p-
Orbitale der Dachatome mit bindenden Beitr,gen von p-
Orbitalen der Prismenatome st�tzt. Die vorhergesagten
Bindungsparameter und deren 6nderungen[8] stimmen gut
mit den experimentellen Werten �berein.

Erst bei Temperaturen unter 110 K zeigt 2 ein EPR-
Signal. Dieses rasche Relaxationsverhalten ist nicht unge-
w@hnlich f�r Clusterradikale schwerer Hauptgruppenele-
mente[9] und deutet auf nahe beieinander liegende paramag-
netische Zust,nde mit Bahnbeitrag hin (Spin-Bahn-Kopp-
lung). Auch in verd�nnter glasartig erstarrter 1,2-Difluorben-
zol-L@sung ist das Signal wegen zahlreicher �berlappender
Hyperfeinstrukturlinien (69Ga: I= 3=2, 60.1%; 71Ga: I= 3=2,
39.9%) wenig aufgel@st. Es existiert eine erhebliche, ann,-
hernd axiale g-Anisotropie (g1,2= 2.11, g3= 1.98). Metall-
kopplungen werden zu a< 3 mT gesch,tzt, was ebenso wie
die g-Faktoren f�r eine zumindest teilweise Spindelokalisa-
tion im Cluster spricht.[9]

Die Clusterchemie mit Gallium war in der Vergangenheit,
von Ausnahmen wie etwa den tetraedrischen Clustern abge-
sehen, gepr,gt durch die Bildung metalloider Ger�ste,[10] die
in ihrer Struktur von den bekannten deltaedrischen Borclus-
tern abweichen.[11] Gerade die einfache Synthese von 2 durch
Reduktion des neutralen Clusters 1 und die damit verbunde-
nen Struktur,nderungen verdeutlichen dagegen eindrucks-
voll die starke 6hnlichkeit der schweren Elemente der dritten
Hauptgruppe zu ihrem leichten Homologen. Beim Alumi-
nium belegt die ikosaedrische Verbindung K2[Al12iBu12] eine
,hnlich enge Beziehung zum Bor.[12]

Experimentelles
1,2-Difluorbenzol wurde �ber Molek�lsieb (4 N) getrocknet. 0.151 g
(0.132 mmol) Ga9(CMe3)9[1] wurden in 7 mL 1,2-Difluorbenzol gel@st
und bei Raumtemperatur zu einer L@sung von 0.047 g (0.143 mmol)
Decamethylcobaltocen[3] in 5 mL 1,2-Difluorbenzol gegeben. Die
Mischung wurde 1 h ger�hrt, wobei sich die Farbe von gr�n nach
leuchtend gr�n ,nderte. Ungef,hr 2=3 des L@sungsmittels wurden im

Vakuum bei Raumtemperatur durch Destillation entfernt. Dunkel-
gr�ne Kristalle von 2 wurden durch Abk�hlen der L@sung auf�30 8C
erhalten (Ausbeute: 0.161 g, 83% bezogen auf 1). Zersetzung (unter
Argon, abgeschmolzene Kapillare) bei 191 8C. IR (Nujol-Verreibung,
CsBr-Platten): ñ [cm�1]: 1505m (Cp*), 1462vs, 1376vs (Nujol), 1352s,
1268m (d-CH3), 1204w, 1157vs, 1099w, 1075w, 1021m (n-CC), 967w,
932w (CH3-Rocking), 807s (nas-C3C), 753s, 722s (Cp*), 512m, 444m (n-
Ga9C9), 362m (d-C3C). UV/Vis (n-Hexan): lmax [nm] (lge): 290 (5.2),
480 (4.0), 600 (3.5). EPR: X-Band-Messung in glasartig erstarrter 1,2-
Difluorbenzol-L@sung bei 4 K.
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